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Motivation:
Tohoku, Japan

Earthquake and Tsunami
March 11, 2011

How do we estimate risk
from these events?

What does this mean for the
insurance industry?



Forecasting and Nowcasting

Forecasting is a probability of future activity in the hazard (earthquake) cycle
* We wish to calculate the probability of a future large earthquake
* We need to estimate the time, location, and magnitude of the event
Nowcasting describes the current state of the hazard cycle

* First used to describe the current state of the economic/business cycle

* Also used in weather and climate applications



Machine Learning

Machine learning is an application of artificial intelligence (Al)

Provides systems the ability to automatically learn and improve from experience

Machine Learning (“ML”) focuses on the development of computer programs that
can access data and build models of the process

Aims to learn patterns in past data and predict future data

* Now commonly used in data science applications including advertising in Google,
Amazon, Facebook, etc.

» Several sophisticated ML libraries are now readily available on the web as open
source



Machine Learning

Goal
Task

Past Experience
Performance

Subcategories

* ML methods are based on defining labeled “feature vectors”.

Supervised Learning

A program that performs as well as humans

Well defined (e.g., a target function to constrain
results)

Training data set provided by a human

Error/accuracy with respect to the task

Classification and Regression

* Labels are target variables for each feature vector.
* Typical feature vectors are statistical quantities characterizing the system

* Labels could be “1” for presence of a desired characteristic, “0” for its absence
 Asanexample, label “1” could be a major earthquake in the next year, “0” otherwise

Unsupervised Learning

To find structure in the data
Not well defined or could be undefined

None supplied

Unable to evaluate

Clustering/Dimensional Reduction (including
feature extraction/selection)



Machine Learning Open Source Libraries

» Scikit-Learn (Classification and
Regression)

* Tensorflow (Neural Networks
including Deep Learning)

* PyTorch (Deep Learning)

» Keras (Deep Learning)
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(Rundle et al., 2020)

Example of a decision tree in Scikit-Learn application




Machine Learning

Libraries include:

e Scikit-Learn
e Tensorflow
* PyTorch

* Keras

Workflow for Forecasting/Nowcasting with Machine Learning

| User Interface (Ul)

I Javascript, Python, HTML
|
|

XML/JSON, Web Services

Global EEEEEgs T T
Data

Automated
machine learning
algorithms involve
training and testing
labeled feature
vectors

Database

: Middleware
| (PHP, MySQL)

------------------------------------------------- I A new label implies
a forecast for
future data

Labeled Machine

I

|

|

|

I

|

: Feature / Learning -
, The result is
|

|

|

I

|

predicted labels Tr N

Vectors Libraries Labels

future unlabel[” |y
feature vectors ™

AR
) )

&
Y

1
1
1
1
1
Predicted :
1
1
1
1
1
1
1



Example: The Earthquake Cycle in the Nankai Trench, Japan

M Ando, Tectonophysics, v27, p112 (1975)

e Data from historic writings in Japan

* The basic idea of the earthquake “cycle”
started in Japan using historical data
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The Earthquake Cycle

Report of the 1906 California Earthquake Investigation (1910)
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Applications of ML to Earthquake Forecasting

(Rouet-Luduc et al., 2017,2019)

Earthquake forecasting in the l[aboratory

Laboratory experiments on model
earthquakes faults showed sudden slip
accompanied by bursts of acoustic
emissions (AE: small [aboratory
“earthquakes”)

Time to

R-L used a machine learning technique
called "Random Forest” to predict the
onset of sliding from the AE

The Random Forest method is an
example of “supervised learning”
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Applications to Cascadia
(Rouet-Luduc et al., 2017,2019)

» Episodic Tremor and Slip (ETS) is a
process of sudden small slip on faults
accompanied by a burst of small
earthquakes

 Similar to the laboratory friction
experiments

* Rouet-Leduc applied the method to
the Pacific Northwest subduction zone
and found similar quality results to
predict the ETS events

Cascadia earthquake sources
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Applications:

Earthquakes along the west
coast of the US, Mexico and
Canada since 1980

These earthquakes occur irregularly
in time and do not show the rather
periodic patterns shown in the
laboratory or in Cascadia
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Earthquake “Bursts”

Major earthquakes are accompanied by many
small small magnitude earthquake burst events

One type of burst is represented by earthquake
aftershocks

Other types of burst events are called “swarms”,
where there is no large main event

We have used ML classification techniques to
show that the size of these bursts varies
systematically in time prior to large earthquakes
in California (Rundle and Donnellan, 2020)
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Earthquake “Bursts”
Rundle and Donnellan (2020)

Horizontal radius of small
earthquake bursts as a function
of time

Region is a 600 km radius circle
around Los Angeles, CA

Data show that burst radius
decreases with time prior to M>7
earthquakes

Most recent earthquake is a
M7.3 earthquake in east-central
California on July 5, 2019, the
Searles Lake Ridgecrest,
California earthquake
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Application: Nowcasting Tsunamis and Runup
for Tsunami Early Warning

* We would like to provide an
estimate of risk from a major
earthquake and tsunami

* Both long term (months to
years) risk as well as early
warning (minutes)

* For this we need not only an
earthquake model, but a
tsunami inundation model
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Nowcasting Great Earthquake and Tsunamis
Source Regions

Global Great Earthquakes M= 7.9 Since 1900
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Sanriku Coast Source Region

Global Great Earthquakes M = 7.9 Since 1900
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Earthquake Potential Score

EPS for M = 8.0 Earthquakes within Sanriku Source Region
After M9.1 on 2011/03/11 at 05:46:24.120
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UNAVCO_ STEPS INVOLVED IN GNSS DERIVED
TSUNAMI EARLY WARNING

pﬁ;iz sls. ti:l:-‘ei;; i:::e Step 2: Estimate the SFep 3: Inversion for Ste!a 4: Predict gr?und
GNSS data (< 10 secs) earthquake magnitude and finite fault model, ~ 90 displacement using
TITT. e location (~60 secs) secs (length and the FFM (~120 secs)
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* currently methods using seismic data only

Step 5: Run tsunami
simulation, using
submarine

Tsunami model from Diego Melgar, U
Oregon
Model based on source fault slip inversion with data
from tide gauges, static coseismic offsets from GPS, and
real-time kinematic GPS solutions from NSF-funded
stations.
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Simulating Great Tsunamis: Tohoku Earthquake and Tsunami

March 11, 2011

Simulations by David Grzan and John
Wilson with help from Steve Ward
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*ROMS: Regional Ocean Modeling System
(Finite Difference)

Tsunami Squares is a simulation method that can
compute coastal runup and inundation, as well as
basin-wide tsunamis. We verify results of the
simulations with buoy data and runup data. As
part of the simulation, we conserve mass,
momentum and energy.
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Pacific Basin — Wide Simulation by Tsunami Squares Method




Summary

* Great earthquakes and tsunamis present major risks to populated
regions

* Anticipating these events by means of forecasting and nowcasting
remains an important problem

* Modern methods of Machine Learning are promising tools for
advancing the science

e Early warning depends on advances in models and technology

Thank you for your attention!



